Element base of electronic devices. Circuitry. Electronic devices

Lecture



Electronics

This term has other meanings, see Electronics (meanings).

Various electronic components

Electrician (from the Greek. Ηλεκτρόνιο - electron) - the science of the interaction of electrons with electromagnetic fields and methods of creating electronic devices and devices for the conversion of electromagnetic energy, mainly for receiving, transmitting, processing and storing information. [one]

Content

  • 1. History
  • 2 Fields of electronics
    • 2.1 Solid State Electronics
      • 2.1.1 The history of solid-state electronics
      • 2.1.2 Miniaturization of devices
  • 3 Technology of obtaining items
    • 3.1 The main differences between analog and digital electronics
      • 3.1.1 Noise
      • 3.1.2 Development Difficulty
  • 4 Typology of schemes
    • 4.1 Analog Circuits
    • 4.2 Digital circuits
  • 5 Reliability of electronic devices
  • 6 See also
  • 7 Notes
  • 8 Literature

Story


But electron tubes had significant drawbacks. This is primarily large size and high power consumption *** (which was critical for portable devices). Therefore, solid-state electronics began to develop, and diodes and transistors began to be used as the element base. The invention of radio preceded the emergence of electronics. Since the radio transmitters immediately found application (primarily on ships *** and in the military business), they needed an element base, which electronics took up the creation and study of. Element base of the first generation was based on electronic tubes. Accordingly, vacuum electronics has been developed. Its development was also facilitated by the invention of television and radar, which were widely used during World War II.

Element base of electronic devices. Circuitry.  Electronic devices

The development of the element base from
50s: historical excursionThe simplest of devices is the mechanical key. The first electronic key was a vacuum diode, patented in 1904 by the Englishman D.A. Fleming. Then there was a vacuum triode (1906, L. De Forest and R. Liben) and a semiconductor transistor (1947, W. Brattein, J. Bardin, W. Shockley), and then integrated circuits on silicon (1958-1959), laid the foundation for microelectronics. The main trend of this development is to reduce the size of the instrument structures. In modern integrated circuits, they make up units and tenths of a micron (1 micron = 10-6 m

Further development of electronics is associated with the advent of computers. Computers based on transistors were distinguished by their large size and power consumption ***, as well as low reliability (due to the large number of parts). Micro-assemblies and then microchips began to be used to solve these problems. The number of chip elements gradually increased, microprocessors began to appear. Currently, the development of electronics contributes to the emergence of communications, as well as various wireless devices, navigators, communicators, tablets, etc.

The main milestones in the development of electronics can be considered:

  • A. S. Popov’s invention of radio (May 7, 1895), and the beginning of the use of radio receivers,
  • Lee De Forest's invention of the tube triode, the first amplifying element,
  • the use of the Losev semiconductor element to amplify and generate electrical signals,
  • development of solid-state electronics
  • use of conductor and semiconductor elements (work by Ioffe, Schottky),
  • the invention of the transistor in 1947 (William Shockley, John Bardeen and Walter Brattein),
  • the creation of an integrated circuit and the subsequent development of microelectronics, the main area of ​​modern electronics.

Areas of electronics

The following areas of electronics can be distinguished:

  • physics (microworld, semiconductors, electromagnetic waves, magnetism, electric current, etc.) is a field of science in which the processes occurring with charged particles are studied,
  • consumer electronics - household electronic devices and devices that use electrical voltage, electrical current, electric field or electromagnetic waves. (For example, TV, mobile phone, iron, light bulb, electric stove, .. and others.).
  • Energy generation, transportation and consumption of electricity, high-power electrical appliances (for example, electric motor, electric lamp, power plant), electric heating system, power line.
  • Microelectronics - electronic devices in which microchips are used as active elements:
    • optoelectronics - devices that use electric current and photon fluxes,
    • audio-video equipment - devices for amplifying and converting sound and video images,
    • digital microelectronics - devices on microprocessors or logic chips. For example: electronic calculator, computer, digital TV, mobile phone, printer, robot, control panel of industrial equipment, means of transport, and other household and industrial devices.

An electronic device may include a variety of materials and environments where electrical signal processing takes place using different physical processes. But in any device there is necessarily an electrical circuit.

Many scientific disciplines of technical universities are devoted to the study of various aspects of electronics.

Solid state electronics

The history of solid-state electronics

The term solid-state electronics appeared in the literature in the middle of the 20th century to designate devices on a semiconductor component base: transistors and semiconductor diodes, replacing the cumbersome, low-efficiency electrovacuum devices - radio tubes. The root is “hard” used here because the process of controlling electric current occurs in the solid body of a semiconductor in contrast to vacuum, as it did in an electron tube. Later, at the end of the 20th century, this term lost its meaning and gradually fell out of use, since practically all the electronics of our civilization began to use only semiconductor solid-state active elemental bases.

Miniaturization of devices

With the birth of solid-state electronics, a revolutionary fast process of miniaturization of electronic devices began. For several decades, the active elements have decreased ten billion times - from a few centimeters of an electronic radio tube to several nanometers of a transistor integrated on a semiconductor chip.

Technology of obtaining elements

Active and passive elements in solid-state electronics are created on a homogeneous super-pure semiconductor crystal, most often silicon, by injection or spraying new layers in certain coordinates of the crystal body of atoms of other chemical elements, molecules of more complex, including organic substances. Injection changes the properties of a semiconductor at the injection (doping), changing its conductivity on the reverse, thus creating a diode or a transistor or a passive element: resistor, conductor, capacitor or inductance coil, insulator, heat sink element and other structures. In recent years, the production technology of light sources on a chip has become widespread. A huge number of discoveries and technologies developed using solid-state technologies still lie in the vaults of patent holders and are waiting in the wings. The technology for producing semiconductor crystals, the purity of which allows the creation of elements a few nanometers in size, has been called nanotechnology, and the electronics section is called microelectronics.

In the 1970s, in the process of miniaturization of solid-state electronics, there was a split into analog and digital microelectronics. In the conditions of competition in the market of element base manufacturers, the manufacturers of digital electronics won. And in the XXI century, the production and evolution of analog electronics were practically halted. Since in reality all consumers of microelectronics require from it, as a rule, not digital, but continuous analog signals or actions, digital devices are equipped with DACs at their inputs and outputs. The miniaturization of electronic circuits was accompanied by an increase in the speed of devices. So, the first digital devices of TTL technology required microseconds to switch from one state to another and consumed a large current, requiring special measures to remove heat.

At the beginning of the XXI century, the evolution of solid-state electronics in the direction of miniaturization of elements gradually stopped and is now almost stopped. This stop was predetermined by the achievement of the smallest possible size of transistors, conductors and other elements on the semiconductor chip, which are still able to divert the heat generated during the flow of current and not collapse. These dimensions have reached units of nanometers and therefore the technology of manufacturing microchips is called nanotechnology. The next step in the evolution of electronics may become optoelectronics, in which the photon, a much more mobile, less inertial than electron / “hole” in the semiconductor of solid-state electronics, will act as the carrier element.

The main solid-state active devices used in electronic devices:

  • A diode conductor with unilateral conductivity from the anode to the cathode is used to rectify the alternating current;
  • Diode device with a relatively stable threshold voltage anode-cathode - voltage regulator, voltage limiter;
  • Diode current-voltage device with nonlinear dependence as an amplifier or a microwave electric signal generator: tunnel diode, avalanche-transit diode, Gunn diode, Schottky diode;
  • Bipolar transistors - transistors with two physical pn-junctions, the current of the Collector-Emitter of which is controlled by the current Base-Emitter;
  • A field-effect transistor — a transistor whose Source-Stock current is controlled by a Voltage at a Gate-Stock pn or np junction or a potential on it in transistors without a physical transition — with a gate galvanically isolated from the Stoke-Source channel;
  • Conductivity-controlled diodes Dinistors and thyristors, used as switches, light-emitting diodes and photodiodes, used as converters of e / m radiation into electrical signals or electrical energy or vice versa;
  • An integrated microcircuit is a combination of active and passive solid-state elements on one or several crystals in one package, used as a module, an electronic circuit in analog and digital microelectronics.

Examples of the use of solid-state devices in electronics:

  • Voltage multiplier on the rectifier diode;
  • Frequency multiplier on nonlinear diode;
  • Emitter follower (voltage) on a bipolar transistor;
  • Collector amplifier (power) on a bipolar transistor;
  • Inductance emulator on integrated circuits, capacitors and resistors;
  • Input impedance converter on a field or bipolar transistor, on an integrated circuit of an operational amplifier in analog and digital microelectronics;
  • An electric signal generator on a field diode, a Schottky diode, a transistor or an integrated circuit in an alternating current signal generator;
  • Rectifier voltage rectifier diode in alternating electric current circuits in a variety of devices;
  • A source of stable voltage on the Zener diode in voltage stabilizers;
  • The source of stable voltage on the rectifier diode in the bias voltage base-emitter circuits of the bipolar transistor;
  • Light-emitting element in the lighting device on the LED;
  • Light-emitting element in optoelectronics on the LED;
  • Light-receiving element in optoelectronics on the photodiode;
  • Light-receiving element in solar panels of solar power plants;
  • Amplifier of power on a bipolar or field-effect transistor, on an integrated microcircuit Amplifier of power in the output stages of amplifiers of the power of signals, alternating and direct current;
  • Logic element on the transistor, diodes or on the integrated circuit of digital electronics;
  • A memory cell on one or several transistors in a memory chip;
  • High-frequency amplifier on the diode;
  • The processor of digital signals on an integrated microcircuit of the digital microprocessor;
  • The processor of analog signals on the transistors, integrated circuits of the analog microprocessor or operational amplifiers;
  • Computer peripherals on integrated circuits or transistors;
  • Input stage operational or differential amplifier transistor;
  • Electronic key in switching circuits of signals on an FET with an insulated gate;
  • Electronic key in schemes with memory on a Schottky diode.

The main differences between analog and digital electronics

Since the analog and digital circuits information is encoded differently, they have different signal processing processes. It should be noted here that all operations that can be performed on an analog signal (in particular, amplification, filtering, range limiting, etc.) can be duplicated in the field of digital electronics. The behavior of any digital circuit can also be explained using rules that describe the operation of analog electronic circuits.

Noise

In accordance with the method of encoding information in analog circuits, they are much more vulnerable to the effects of noise than digital circuits. A small change in the signal can make significant modifications to the information transmitted and ultimately lead to its loss; in turn, digital signals take only one of two possible values, and in order to cause an error, the interference should be about half of their total value. This property of digital circuits can be used to increase the resistance of signals to interference. In addition, noise counteraction is provided by means of signal recovery at each logic gate, which reduces or eliminates interference; Such a mechanism becomes possible due to the quantization of digital signals [2] . As long as the signal remains within a certain range of values, it is associated with the same information.

Noise is one of the key factors affecting signal accuracy; this is mainly the noise present in the original signal and the interference introduced during its transmission (see Signal-to-Noise Ratio). Fundamental physical limitations - for example, the so-called. "Shot noise" in the components - set the limits of resolution of analog signals. In digital electronics, additional accuracy is provided by the use of auxiliary bits that characterize the signal; their number depends on the performance of the analog-to-digital converter (ADC) [3] .

Development difficulty

Analog circuits are more difficult to develop than comparable digital ones; This is one of the reasons why digital systems have become more common than analog systems. An analog circuit is developed manually, and the process of creating it provides less opportunity for automation. It should be noted, however, that in one form or another, a digital electronic device needs an analog-interface to interact with the environment [4] . For example, a digital radio has an analogue preamplifier, which is the first link in the receiving circuit.

Typology of schemes

Electronic circuits and their components can be divided into two key types depending on the general principles of their functioning: analog (continuous) and digital (discrete). The same device can consist of both circuits of the same type or of mixing both types in one or another proportion.

Analog circuits

Mostly analog electronic devices and devices (radio receivers, for example) constructively represent a combination of several varieties of basic circuits. Analog circuits use a continuous voltage range, as opposed to discrete levels used in digital circuits. At the moment, a significant number of various analog circuits have been developed - in particular, their number is large due to the fact that a “circuit” means a lot: from a single component to a whole system consisting of thousands of elements. Analog circuits are sometimes called linear (although it should be noted that in some of their forms — converters, for example, or modulators — many non-linear effects are used). As typical examples of analog circuits can be called electron tubes and transistor amplifiers, operational amplifiers and oscillators.

At present it is difficult to find such an electronic circuit that would be completely analog. Now analog circuits use digital or even microprocessor technologies to increase their performance. Such a scheme is usually called not analog or digital, but mixed. In some cases, it is difficult to make a clear distinction between continuous and discrete schemes - due to the fact that both those and others include elements of both linear and non-linear nature. Примером может послужить, допустим, компаратор: получая на входе непрерывный диапазон напряжения, он в то же время выдает на выходе лишь один из двух возможных уровней сигнала, подобно цифровой схеме. Похожим образом перегруженный транзисторный усилитель может приобрести свойства контролируемого переключателя, также имеющего два уровня выходного сигнала.

Цифровые схемы

К цифровым относятся схемы, основанные на некотором количестве дискретных уровней напряжения. Они представляют собой наиболее типичную физическую реализацию булевой алгебры и составляют элементную основу всех цифровых компьютеров. Термины «цифровая схема», «цифровая система» и «логическая схема» часто при этом рассматриваются как синонимичные. Для цифровых схем характерна, как правило, двоичная система с двумя уровнями напряжения, которые соответствуют логическому нулю и логической единице соответственно. Часто первый соотносится с низким напряжением, а вторая — с высоким, хотя встречаются и обратные варианты. Изучались также и тернарные логические схемы (то есть с тремя возможными состояниями), предпринимались попытки построения компьютеров на их основе. Помимо вычислительных машин, цифровые схемы составляют основу электронных часов и программируемых логических контроллеров (используемых для управления промышленными процессами); ещё одним примером могут служить цифровые сигнальные процессоры.

К числу базовых конструктивных элементов этого типа относятся:

  • Логические вентили
  • Сумматоры
  • Триггеры (в том числе триггеры Шмитта)
  • Counters
  • Registers
  • Мультиплексоры

Устройства с высокой степенью интеграции:

  • Микропроцессоры
  • Microcontrollers
  • Интегральные схемы для специфического применения (ASIC)
  • Цифровые сигнальные процессоры (DSP)
  • Программируемые пользователем вентильные матрицы (FPGA)

and etc.

Element base of electronic devices. Circuitry.  Electronic devices

Element base of electronic devices. Circuitry.  Electronic devices

Element base of electronic devices. Circuitry.  Electronic devices

Element base of electronic devices. Circuitry.  Electronic devices

Надёжность электронных устройств

Надёжность электронных устройств складывается из надёжности самого устройства и надёжности электроснабжения. Надёжность самого электронного устройства складывается из надёжности элементов, надёжности соединений, надёжности схемы и др. Графически надёжность электронных устройств отображается кривой отказов (зависимость числа отказов от времени эксплуатации). Типовая кривая отказов имеет три участка с разным наклоном. На первом участке число отказов уменьшается, на втором участке число отказов стабилизируется и почти постоянно до третьего участка, на третьем участке число отказов постоянно растёт до полной непригодности эксплуатации устройства.

see also

  • Car electronics
  • Microelectronics
  • Optoelectronics
  • Radio engineering
  • Photonics
  • Радиодетали
  • Экситоника

Электронные компоненты

Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Фоторезистор
Конденсатор · Переменный конденсатор · Подстроечный конденсатор
Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор · Мемристор
Активные твердотельные

Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Магнитодиод ·Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор · КМОП-транзистор · Однопереходный транзистор · Фототранзистор ·Составной транзистор · Баллистический транзистор
Интегральная схема · Цифровая интегральная схема · Аналоговая интегральная схема · Гибридная интегральная схема
Тиристор · Симистор · Динистор · Фототиристор
Оптрон · Резисторная оптопара


Датчик Холла
Пассивные вакуумные Бареттер
Активные вакуумные и газоразрядные Электронная лампа · Электровакуумный диод · Триод · Маячковый триод · Тетрод · Лучевой тетрод · Пентод · Гексод · Гептод · Пентагрид · Октод · Нонод · Механотрон · Клистрон · Магнетрон · Амплитрон · Платинотрон · Электронно-лучевая трубка · Лампа бегущей волны · Лампа обратной волны · Тиратрон · Газотрон · Кенотрон · Игнитрон
Устройства отображения Электронно-лучевая трубка · ЖК-дисплей · Светодиод · Газоразрядный индикатор · Вакуумно-люминесцентный индикатор · Блинкерное табло ·Семисегментный индикатор · Матричный индикатор · Кинескоп
Акустические устройства и датчики Микрофон · Громкоговоритель · Тензорезистор
Термоэлектрические устройства Термистор · Термопара · Элемент Пельтье

Comments


To leave a comment
If you have any suggestion, idea, thanks or comment, feel free to write. We really value feedback and are glad to hear your opinion.
To reply

Electronics, Microelectronics, Element Base

Terms: Electronics, Microelectronics, Element Base