9. PSYCHOPHYSIOLOGY OF THINKING ACTIVITIES

Lecture



The study of mental activity in psychophysiology has its own specifics. Theoretically, the problem of the physiological bases of mental activity has been little developed. So far, there are no widely accepted concepts (as is the case with respect to perception, memory), which would explain how the central nervous system provides the thinking process. At the same time, there are many empirical studies that are devoted to the study of this problem. They form two relatively independent approaches.
The first is the registration of physiological indicators in the course of mental activity. In fact, it is aimed at identifying the dynamics of physiological parameters in the process of solving problems of various types. By varying the content of the tasks and analyzing the concomitant changes in physiological parameters, researchers obtain physiological correlates of the activity being performed. On this basis, conclusions are drawn regarding the characteristics of the physiological support of solving problems of various types.
The second approach proceeds from the fact that the methods of cognitive activity inherent in man are naturally reflected in physiological indicators, as a result of which they acquire stable individual characteristics. According to this logic, the main thing is to find those indicators that are statistically reliably related to the success of cognitive activity, for example, IQ, and in this case, physiological indicators are obtained independently of psychometric ones.
The first approach allows to study the procedural side, i.e. to trace how the physiological activity is rearranged in the course of solving the problem and how the result is reflected in the dynamics of this activity. Modeling mental tasks allows you to highlight new variants of changes in physiological indicators and make generalizations about the corresponding physiological mechanisms. The difficulty lies in the fact that, firstly, to develop informative models of mental activity (tasks), and, secondly, to select adequate methods and indicators that allow to fully characterize the activity of physiological systems - potential "candidates" to participate in ensuring the process solving the problem. In this case, strictly speaking, the conclusions apply only to the class of mental tasks that are the subject of study. Obviously, modeling cannot cover all areas of human mental activity, and this is the limitation of the first approach.
In the second campaign, there is no such limitation, since the comparison of individual-specific stable physiological and psychological indicators is put at the forefront. It is assumed that the individual experience of mental activity is reflected in those and others. However, this logic does not allow to investigate the psychophysiology of the problem solving process, although, according to the results of the comparison, some assumptions are made as to what contributes to its successful organization.

9.1. Electrophysiological correlates of thinking

  • 9.1.1. Neural Correlates of Thinking
  • 9.1.2. Electroencephalographic correlates of thinking

In the overwhelming majority of cases, the main indicators in these studies are brain performance indicators ranging from neural activity to total bioelectric. In addition, the registration of myogram, electrical activity of the skin and eye movements is used as a control (see topic 2). When choosing mental tasks, they often rely on a rule of thumb: tasks should be addressed to topographically separated areas of the brain, primarily the cortex of the big hemispheres. A typical example is the combination of tasks of verbal-logical and visual-spatial.

9.1.1. Neural Correlates of Thinking

Researches of neural correlates of thinking are currently of particular importance. The reason is that among the various electrophysiological phenomena, the impulse activity of neurons is most comparable to the processes of thinking in its temporal parameters.
It is assumed that there should be a correspondence between the time of information processing in the brain and the time of realization of thought processes. If, for example, decision making takes 100 ms, then the corresponding electrophysiological processes should have time parameters within 100 ms. On this basis, the most suitable object of study is the impulse activity of neurons. The pulse duration (action potential) of a neuron is 1 ms, and the interpulse intervals are 30-60 ms. The number of neurons in the brain is estimated to be ten to the tenth degree, and the number of connections that arise between neurons is almost infinite. Thus, due to the temporal parameters of functioning and the multiplicity of connections, neurons have potentially unlimited possibilities for functional integration in order to ensure mental activity. It is believed that the complex functions of the brain, and especially thinking, are provided by systems of functionally connected neurons.

Neural codes. The problem of codes, i.e. "Language", which uses the human brain at different stages of solving problems, is of paramount importance. In fact, this problem is determining the subject of the research: as soon as it becomes clear in which forms of physiological activity of neurons the mental activity of a person is reflected (coded), it will be possible to come close to understanding its neurophysiological mechanisms.
Until recently, the average frequency of a sequence of impulses was considered the main carrier of information in the brain, i.e. average frequency of impulse activity of a neuron in a short period of time, comparable to the implementation of a mental action. The brain was compared with the information-control device, the language of which is frequency. However, there is reason to believe that this is not the only kind of code, and perhaps there are others that take into account not only temporal factors, but also spatial ones, due to the interaction of neuronal groups located in topographically separated parts of the brain.
A significant contribution to the solution of this fundamental problem was made by the research of N.P. Bekhtereva and her staff.

Neural correlates of mental operations. The study of the impulse activity of neurons of deep structures and individual zones of the human cortex in the process of mental activity was carried out using the method of chronically implanted electrodes. The first evidence of the presence of regular rearrangements of the frequency characteristics of the impulse activity (patterns) of neurons was obtained by perceiving, memorizing and reproducing individual verbal stimuli.
Further research in this direction allowed us to identify the specific features of the processes of associative and logical processing of verbal information by a person up to various semantic shades of concepts. In particular, it was found that the semantic significance of a stimulus can be encoded by the frequency of the discharge of neurons, i.e. patterns of the current frequency of neuronal activity of some brain structures are able to reflect the general semantic characteristics of words.
It also turned out that the current discharge frequency pattern of a functionally united group of neurons can be viewed as a structure or sequence comprising several components. These components, represented by bursts (or drops) of the frequency of the discharges, arise at certain stages of the solution of the problem and, apparently, reflect the inclusion or switching of the work of neurons to a new stage of solving the problem.
Thus, when studying the dynamics of the impulse activity of neurons in certain areas of the brain, stable spatio-temporal patterns (patterns) of this activity associated with a specific type of human thought activity were identified. After identifying such patterns, one can quite accurately determine where and when certain changes in the activity of neural associations will develop in the human brain in the process of solving problems of a certain type. At the same time, the patterns of formation of patterns of impulsive activity of neurons in the course of various psychological tests performed by the subject sometimes made it possible to predict the result of performing a specific associative-logical operation.

9.1.2. Electroencephalographic correlates of thinking

Already from the time of the first classical works by Berger (1929), Adrian and Matthews (1934), it is well known that mental activity causes sustained desynchronization of the alpha rhythm , and that it is desynchronization that turns out to be an objective indicator of activation.

EEG rhythms and thinking. It was established that during mental activity, the frequency-amplitude parameters of the EEG are rearranged, covering all the main rhythmic ranges from delta to gamma. So, when performing mental tasks, delta and theta activity may increase. Moreover, the strengthening of the last component is positively correlated with the success of problem solving. In these cases, theta activity is most pronounced in the anterior parts of the cortex, and its maximum severity corresponds in time to the periods of greatest attention concentration of a person when solving problems and reveals a connection with the speed of solving problems. It should be emphasized, however, that tasks of different content and complexity cause unequal changes in theta range.
According to some authors, mental activity in adults is accompanied by an increase in beta-rhythm power, with a significant increase in high-frequency activity observed in mental activity, including elements of novelty, while stereotypical, repetitive mental operations are accompanied by its decrease. It was also established that the success of performing verbal tasks and tests on visual-spatial relations is positively associated with high activity of the EEG beta range of the left hemisphere. According to some assumptions, this activity is associated with the reflection of the activity of the mechanisms for scanning the stimulus structure carried out by neural networks producing high-frequency EEG activity.
The dynamics of alpha mental activity is complex. When analyzing the alpha rhythm , it has recently been decided to single out three (sometimes two) components: high-medium and low-frequency. It turns out that these alpha-rhythm subcomponents are differently related to mental activity. The low-frequency and high-frequency alpha rhythm is more correlated with the cognitive aspects of the activity, whereas the mid-frequency alpha rhythm mainly reflects the processes of nonspecific activation.

Spatio-temporal organization of EEG and thinking. Changes in the bioelectrical activity of the brain in the process of mental activity, as a rule, have a zone specificity. In other words, EEG rhythms in different zones of the cortex behave differently when solving problems. There are several ways to assess the nature of the space-time organization of the EEG in the process of solving problems.
One of the most common ways is to study the distant synchronization of biopotentials and the coherence of the spectral components of the EEG in different areas of the brain. It is known that a certain average level of synchronicity and coherence of the EEG is usually characteristic of the state of rest, which reflects the active maintenance of the interzonal connections and the tone of the cortical zones at rest. Upon presentation of assignments, these typical interzone relations for peace change significantly.
It has been established that during mental activity there is a sharp increase in the number of areas of the cortex, the correlation between which for various components of the EEG reveals a high statistical significance. At the same time, however, depending on the nature of the task and the chosen indicator, the picture of interzonal relations may look different. For example, when solving both verbal and arithmetic problems, the degree of distant synchronization of biopotentials in the frontal and central regions of the left hemisphere increases, but in addition, when solving mathematical problems, an additional activation focus appears in the parietal-occipital regions.
The degree of spatial synchronization of biopotentials varies depending on the degree of algorithmization of the action. When executing an easy-to-follow action, the degree of synchronization in the posterior regions of the left hemisphere increases, with a difficult algorithmic action, the activation focus moves to the frontal areas of the left hemisphere.
Moreover, the character of interzonal relations essentially depends on the strategy a person implements in the process of solving a problem. For example, when solving the same mathematical problem in different ways: arithmetic or spatial, the activation foci are located in different parts of the cortex. In the first case, in the right prefrontal and left parieto-temporal, in the second, first in the anterior and then the posterior regions of the right hemisphere. According to other data, with a sequential method of information processing ( successive ), there is a predominant activation of the front zones of the left hemisphere, with a holistic setting ( simultaneous ) of the same zones of the right hemisphere. Also noteworthy is the fact that interzonal relations change depending on the degree of originality of the solution of the problem. Thus, in subjects using standard methods of solution, activity of the left hemisphere predominantly prevails, on the contrary, subjects who use non-standard (heuristic) solutions are characterized by prevalence of activation in the right hemisphere, which is strongest in the frontal areas, both at rest and in solving the problem.

9.2. Psychophysiological aspects of decision making

Problem decision making is among interdisciplinary. It is addressed by cybernetics, control theory, engineering psychology, sociology, and other disciplines; therefore, there are different and sometimes difficultly comparable approaches to its study. At the same time, decision-making is the culminating and sometimes the final operation of human mental activity. It is logical that the psycho-physiological support of this stage of the thinking process is the subject of a special analysis.
In psychophysiology and neurophysiology, this problem has its own history of study. The theory of functional systems and the information paradigm (see topic 1) widely operate on this concept. There are also quite a few empirical studies devoted to the study of the physiological correlates and mechanisms of the phenomenon of decision making.

Decision making in the theory of functional systems. According to P.K. Anokhin (1975), the need to introduce the concept of "decision making" arose in the process of developing the theory of FS for a clear indication of the stage at which the formation and the execution of a behavioral act begin. Thus, decision making in a functional system is one of the stages in the development of goal-directed behavior. It is always associated with a choice, because at the stage of afferent synthesis there is a comparison and analysis of information from different sources. Decision making is a critical “point” in which the organization of the complex of efferent excitations takes place, which subsequently generates a certain action.
Turning to the physiological decision-making mechanisms, P.K. Anokhin emphasized that decision making is a process involving different levels of organization: from an individual neuron that produces its response as a result of the summation of many influences, to the system as a whole, the integrating influence of a multitude of neuronal associations. The final result of this process is expressed in the statement: the system made a decision.

Levels of decision making. The importance of decision making in behavior and mental activity is obvious. However, the description of this process from the point of view of a systematic approach, as is often the case, is too general. Decision making as an object of psychophysiological research should have a specific content and be available for study using experimental methods.
Neurophysiological decision-making mechanisms should differ significantly depending on the context of which activity they are included. In every sensory and motor system, with each perceptual or motor act, there is a varied and multilateral choice of a possible answer, which is carried out at an unconscious level.
Fundamentally different neurophysiological mechanisms have "true" decision-making processes, which act as a part of conscious voluntary activity of a person. Будучи обязательным звеном в обеспечении всех видов познавательной деятельности, процесс принятия решения в каждом из них имеет свою специфику. Перцептивное решение отличается от мнестического или решения мыслительной задачи, и что самое существенное мозговое обеспечение этих решений включает разные звенья и строится на различных уровнях.
В психофизиологии наиболее разработаны представления о коррелятах и механизмов принятия решения, включенного в процессы переработки информации и организацию поведенческого акта.

Вызванные потенциалы и принятие решения. Продуктивным методом исследования физиологических основ принятия решения является метод регистрации вызванных, или событийно-связанных, потенциалов (ВП и ССП). ССП — это реакции разных зон коры на внешнее событие, сопоставимые по длительности с реальным психологическим процессом переработки информации (см. тему 5 п. 5.3) или поведенческим актом.
В составе этих реакций можно выделять компоненты двух типов: ранние специфические ( экзогенные ) и поздние неспецифические ( эндогенные ) компоненты. Экзогенные компоненты связаны с первичной обработкой, а эндогенные отражают этапы более сложной обработки стимулов: формирование образа, сличение его с эталонами памяти, принятием перцептивного решения.
Обширный массив экспериментальных исследований связан с изучением наиболее известного информационного эндогенного колебания волны Р 300, или Р 3, позднего позитивного колебания, регистрируемого в интервале 300-600 мс. Многочисленные факты свидетельствуют, что волна Р 3 может рассматриваться как психофизиологический коррелят таких когнитивных процессов, как ожидание, обучение, рассогласование, снятие неопределенности и принятие решения.
Функциональное значение волны Р 3 широко обсуждается во многих исследованиях, при это обнаруживается целый ряд различных подходов к его интерпретации. В качестве примера приведем некоторые из них.
1. С позиций теории функциональных систем возникновение волны Р 3 характеризует смену действующих ФС, переход от одного крупного этапа поведения к другому, волна Р 3 при этом отражает перестройку "текущего содержания психики", а ее амплитуда — масштаб реорганизаций, происходящих в той или иной области мозга ( Максимова Н.Е. и Александров И.О. , 1984).
2. С позиций информационного подхода функциональное значение Р3 рассматривается как результат "когнитивного завершения". По этой логике, процесс восприятия состоит из отдельных дискретных временных единиц "перцептивных эпох". Внутри каждой эпохи осуществляется анализ ситуации и складывается ожидание события, которое должно завершить эпоху. Завершение эпохи выражается в виде появления волны Р 3, преобладающей в теменной области. При этом предполагается, что отдельные компоненты ВП отражают чередование подъемов и спадов активации структур, ответственных за реализацию когнитивной деятельности, а волна Р 3 обусловлена снижением уровня активации в третичных зонах коры, ответственных за когнитивное завершение перцептивного акта и принятие решения.
3. По другим представлениям, волна Р3 представляет собой проявление особой категории метаконтрольных процессов, которые связаны с планированием и контролем поведения в целом, установлением долговременных приоритетов в поведении, определением вероятностных изменений окружающей среды.

Хронометрия мыслительной деятельности. Психофизиологическая хронометрия — направление, исследующее временные параметры (начало, продолжительность, скорость) когнитивных операций с помощью физиологических методов. Наибольшее значение здесь имеют амплитудно-временные характеристики компонентов ВП и ССП.
Объектом изучения являются как экзогенные, так и эндогенные компоненты, отражающие различные стадии процесса переработки информации. Временные параметры первых позволяют судить о времени, которое требуется для сенсорного анализа. Временные параметры эндогенных компонентов дают представление о длительности этапов обработки, связанных с операциями формирования образа, сличения его с эталонами памяти и принятия решения.
Анализ амплитудно-временных параметров этих компонентов в разных ситуациях позволяют установить круг психологических переменных, от которых зависит как скорость переработки информации в целом, так и длительность отдельных стадий этого процесса. Удалось, например, показать, что латентный период Р 3 прямо связан с информационной спецификой стимула и обратно пропорционален сложности экспериментальной задаче. При этом амплитуда компонента Р 3 тем больше, чем сложнее сам стимул в экспериментальной задаче и чем больше когнитивных операций требует от испытуемого ситуация эксперимента.
Таким образом, параметры ВП и ССП все чаще используются как инструмент микроструктурного анализа, позволяющий выделить временные характеристики определенных стадий внутренней организации поведенческого акта, недоступные внешнему наблюдению.

9.3. Психофизиологический подход к интеллекту

Известно, что в психологии существует много разных подходов к анализу природы интеллекта, его структуры, способов функционирования и путей измерения. С позиций психофизиологического анализа целесообразно остановиться на подходе к интеллекту как к биологическому образованию, в соответствии с которым предполагается, что индивидуальные различия в показателях интеллектуального развития объясняются действием ряда физиологических факторов, во-первых, и эти различия в значительной степени обусловлены генотипом, во-вторых.

Три аспекта интеллекта. В теоретическом плане наиболее последовательную позицию здесь занимает Г. Айзенк. Он выделяет три разновидности интеллекта: биологический, психометрический и социальный.
Первый из них представляет генетически детерминированную биологическую базу когнитивного функционирования и всех его индивидуальных различий. Биологический интеллект, возникая на основе нейрофизиологических и биохимических факторов, непосредственно связан с деятельностью коры больших полушарий (см. Хрестомат. 9.1).
Психометрический интеллект измеряется тестами интеллекта и зависит как от биологического интеллекта, так и от социокультурных факторов.
Социальный интеллект представляет собой интеллектуальные способности, проявляющиеся в повседневной жизни. Он зависит от психометрического интеллекта, а также от личностных особенностей, обучения, социо-экономического статуса. Иногда биологический интеллект обозначают как интеллект А, социальный — как интеллект Б. Очевидно, что интеллект Б гораздо шире, чем интеллект А и включает его в себя.
Концепция Айзенка в значительной степени опирается на труды предшественников. Представления о существовании физиологических факторов, определяющих индивидуальные различия в умственной деятельности людей, имеют достаточно длительную историю изучения.

Исторические предпосылки. Еще в середине прошлого века с появлением первых экспериментальных приемов измерения простых психофизиологических показателей, таких как различительная сенсорная чувствительность, время реакции и т.д., в психологии возникло направление, ставящее своей целью найти простые физиологические процессы или свойства, которые могут лежать в основе индивидуальных различий по интеллекту.
Идея использования простых, имеющих физиологическую природу показателей для оценки индивидуальных различий по интеллекту идет от Френсиса Гальтона. Он рассматривал интеллект как биологическое образование, которое нужно измерять с помощью физиологических индикаторов. Экспериментальное воплощение эти идеи нашли в целом ряде работ, в которых в качестве коррелята интеллекта и частично способа его измерения предлагалось рассматривать время выполнения простых заданий.

Время как фактор эффективности. По некоторым представлениям определенная часть индивидуальных различий в успешности выполнения тестов интеллекта объясняется тем, насколько быстро индивид может обрабатывать информацию, причем независимо от приобретенных знаний и навыков. Поэтому времени как фактору, обеспечивающему эффективность умственной деятельности, и в настоящее время придается довольно большое значение.
Таким образом, понятие психической скорости, или скорости выполнения умственных действий, приобретает роль фактора, объясняющего происхождение индивидуальных различий в познавательной деятельности и показателях интеллекта. Действительно, неоднократно показано, что показатель интеллекта связан с временем реакции, взятом в разных вариантах оценки, отрицательной корреляцией, составляющей в среднем — 0,3.
Наряду с этим, в психофизиологии существует специальное направление — хронометрии процессов переработки информации , в котором одним из главных показателей служат латентности компонентов ВП, интерпретируемые как маркеры времени выполнения отдельных когнитивных операций (см. п. 9.2.). Закономерно, что существует целый ряд исследований взаимосвязи показателей ВП и интеллекта.

Нейрональная эффективность. В этом контексте была сформулирована гипотеза нейрональной эффективности, которая предполагает, что "биологически эффективные" индивиды обрабатывают информацию быстрее, поэтому они должны иметь более короткие временные параметры (латентности) компонентов ВП.

9. PSYCHOPHYSIOLOGY OF THINKING ACTIVITIES
Вызванные потенциалы у шести испытуемых с высоким (слева) и шести испытуемых с низким (справа) показателями IQ (по Г.И. Айзенку, 1995)

Эти предположения неоднократно подвергались проверке, и было установлено, что подобная связь обнаруживается при определенных условиях: биполярном способе регистрации ВП и использовании зрительных стимулов. In addition, there are other factors that influence its manifestations, for example, the level of activation. Наибольшее соответствие между короткими латентностями и высокими показателями интеллекта имеет место при умеренном уровне активации, следовательно, связь "латентные периоды ВП — показатели IQ" зависит от уровня активации.
Кроме временных характеристик, для сопоставления с показателями IQ привлекаются и многие другие параметры ВП: различные варианты амплитудных оценок, вариативность, асимметрия.
Наибольшую известность в связи с этим приобрели исследования А. и Д. Хендриксонов, в основе которых лежит теоретическая модель памяти, информационной обработки и интеллекта, базирующаяся на представлении о нейрональных и синаптических процессах и функциях. В основу индивидуальных различий здесь кладутся различия в особенностях синаптической передачи и формирования энграмм памяти. Предполагается, что при обработке информации на уровне синапсов в коре мозга могут возникать ошибки. Чем больше число таких ошибок продуцирует индивид, тем ниже показатели его интеллекта. Количественно оценить число этих ошибок невозможно, но они проявляются в индивидуальных особенностях конфигурации ВП. 9. PSYCHOPHYSIOLOGY OF THINKING ACTIVITIES
Согласно этой концепции, индивиды, безошибочно обрабатывающие информацию, должны продуцировать высокоамплитудные и имеющие сложную форму ВП, т.е. с дополнительными пиками и колебаниями. Низкоамплитудные ВП упрощенной формы характерны для индивидов с низким показателями интеллекта. Эти предположения получили статистическое подтверждение при сопоставлении ВП и показателей интеллекта по тестам Векслера и Равена.
Thus, it can be determined by the number of parameters: Both parameters can be considered as characteristics of biological intelligence.

Topographical factors. In section 9.1.2, the electrophysiological correlates of interzone interaction in the process of mental activity were analyzed. However, this problem is not exhausted, especially when the question is raised about the physiological prerequisites of the intellect.
The role of topographical factors in providing thinking and intelligence can be viewed in at least two ways. The first is related to the morphological and functional features of the individual structures of the brain, which are associated with high mental achievements. The second concerns the features of the interaction between brain structures, in which highly efficient mental activity is possible.
For a long time, skepticism prevailed at attempts to find any morphological and topographical features in the brain structure of people with high intelligence. Recently, however, this point of view has given way to another, according to which the individual characteristics of mental activity are accompanied by certain ratios in the development of various brain regions.
A postmortal study of the brain of people who possessed outstanding abilities demonstrates the connection between the specifics of their talent and the morphological characteristics of the brain, primarily the size of neurons in the so-called receptive cortex layer. An analysis of the brain of the outstanding physicist A. Einstein showed that precisely in those areas where the maximum changes (the front associative zones of the left hemisphere) were to be expected, the receptive layer of the cortex was twice as thick as usual. In addition, the number of so-called glial cells, which served the metabolic needs of enlarged neurons, was found to be much higher than the statistical norm. Characteristically, studies of other parts of Einstein's brain did not reveal any special differences.
It is assumed that such an uneven development of the brain is associated with the redistribution of its resources (mediators, neuropeptides, etc.) in favor of the most intensively working departments. A special role here is played by the redistribution of acetylcholine mediator resources. The cholinergic system of the brain, in which acetylcholine mediates the conduction of nerve impulses, according to some ideas, provides the information component of learning processes. These data suggest that individual differences in human mental activity, apparently, are associated with features of metabolism in the brain.
However, thinking and intelligence are a property of the brain as a whole, so the analysis of the interaction of various regions of the brain, in which highly efficient mental activity is achieved, and especially the analysis of interhemispheric interaction, is of particular importance.
The problem of functional specialization of the hemispheres in human cognitive activity has many different aspects and is well studied (see topic 5, p. 5.4 and topic 8, p. 8.5). Basically, they boil down to the following: an analytical, symbolically mediated cognition strategy is characteristic of the left hemisphere, synthetic, figuratively mediated - for the right. It is natural that the functional properties of the hemispheres, or rather, the degree of their individual severity can serve as a physiological condition for high achievements in solving problems of various types (verbal-logical or spatial).
Initially it was assumed that the condition for high achievements in mental activity is the predominant development of the functions of the dominant left hemisphere, but at present, the functions of the subdominant right hemisphere are of increasing importance. In this connection, the hypothesis of effective bilateral interaction emerged as the physiological basis of general giftedness. It is assumed that the better a right-handed person uses the capabilities of his subdominant right hemisphere, the more he is able to: simultaneously think about different issues; attract more resources to solve problems of interest to him; at the same time compare and contrast the properties of objects, which are separated by the cognitive strategies of each of the hemispheres. The hypothesis of bilateral interaction and the effective use of all the possibilities of the left and right hemispheres in intellectual activity seems to be optimal, because, firstly, it addresses the brain as a whole and, secondly, uses ideas about the brain resources.

The ratio of the neural and topographic levels. Thinking as a mental process and intelligence as an integral cognitive characteristic function on the basis of the properties of the brain, taken in integrity. From the standpoint of a systematic approach (see Topic 1, Section 1.4.5), two levels, or types, of systems should be distinguished in the brain: microsystem and macrosystem.
In relation to thinking and intelligence, the first is represented by the parameters of the functioning of neurons (principles for encoding information in neural networks) and the characteristics of the propagation of nerve impulses (speed and accuracy of information transfer). The second reflects the morphofunctional features and the value of individual brain structures, as well as their spatial and temporal organization (chronotop) in ensuring effective mental activity. The study of these factors makes it possible to identify that the brain , and especially the cortex zones, in the process of mental activity act as a single system with a very flexible and mobile internal structure, which is adequate to the specifics of the task and how to solve it.
A holistic picture of the brain mechanisms underlying mental activity and intelligence is possible in the way of integrating the perceptions that have developed at each of the levels. This is the perspective of psychophysiological research of human mental activity.

Glossary

  1. coherence
  2. activation
  3. endogenous
  4. exogenous
  5. associative zones of the cortex
  6. acetylcholine
  7. cholinergic neurons

Questions for self-test

  1. What methods of psychophysiology are used to study thinking?
  2. How is mental activity reflected in the parameters of distant synchronization and coherence?
  3. How is decision making reflected in the parameters of evoked potentials?
  4. What is meant by the concept of "neural efficiency"?

Bibliography

  1. Eysenck G. Intellect: a new look // Questions of psychology. 1995. № 1.
  2. Bekhtereva, NP, Gogolitsyn, Yu.P., Kropotov, Yu.D., Medvedev, SV Neurophysiological basis of thinking. L .: Science, 1985.
  3. Ivanitsky A.M., Sagittarius V.B., Korsakov I.A. Information processes of the brain and mental activity. M .: Science, 1984.
  4. Lazarev V.V. Informativeness of different approaches to EEG mapping in the study of human mental activity // Human Physiology. V. 18, N 6. 1992.
  5. Livanov M.N. Spatial organization of brain processes. M .: Science, 1972.
  6. Maksimova N.E., Aleksandrov I.O. P300 phenomenon and psychophysiology of behavior // Brain and mental activity. M .: Science, 1984.
  7. Pavlova L.P., Romanenko A.F. A systematic approach to the psychophysiological study of the human brain. L .: Science, 1988.
  8. Decision making problems. M .: Science, 1976.

Topics of coursework and essays

  1. Electrophysiological correlates of thinking.
  2. Psychology and psychophysiology of decision making.
  3. Psychophysiological methods for diagnosing intelligence and their limitations.
  4. The role of hemispheric asymmetry in mental processes.

Comments


To leave a comment
If you have any suggestion, idea, thanks or comment, feel free to write. We really value feedback and are glad to hear your opinion.
To reply

Psychophysiology

Terms: Psychophysiology