2: Physics Information

Lecture



The presence of internal information of the biosphere and, accordingly, its information diversity is confirmed by genetic information, knowledge, skills, intelligence, diversity of life, etc. If you deny the presence of internal information in a living substance, then it should be denied in the substance of the brain, DNA molecules, a living cell. But are we entitled to such denial?

The inert ("inanimate") nature of information is even more diverse than living. And, nevertheless, until recently it was believed that there are no structures in it that “specialize” in information processes. However, modern physics allows us to doubt this statement. The relevant arguments will be discussed below.

About the physics of meaning

Internal information cannot be physical in the generally accepted sense, i.e. observable in the traditional (classical) experience, however, it can be physical in the same unconventional sense as the physical, for example, unobservable physical vacuum (Unobservable does not mean empty. To see this, it is enough to get acquainted with at least one of the numerous theories of physical vacuum. ). Unobserved internal information has its own physics, which can be conventionally called the physics of meaning (Not to be confused with the "meaning of physics", if there is one). In this context, physics deals with the opened sense of internal information (The introduced meaning is the prerogative of external information).

Is it possible, if physics is valid sense? This is a difficult question. For the answer we use the psychological analogy. Let us ask ourselves: in what form are thoughts and their meanings stored in the living substance of our brain? The well-known borderline concept of the thought form, being an abstract product of "language games", does not clarify anything, and polygraphs ("lie detectors"), magnetic resonance tomographs (MRI) do not bother with meanings, being satisfied only with external physiologically and psychophysically accessible symptoms of the working brain. But it is precisely these secret meanings that govern all visible activity throughout our life. So, the meaning of thought is stored, but how, in what form? Today we can only put forward hypotheses.

On the other hand, there are "meaningless" sources of information for which the physics of meaning do not seem to make sense (forgive us for tautology). For example, a coin or a dice, if you are not interested in their device, but only in their states and events ("established states") in well-known games. There are non-intelligent machines, the possible states of which are controlled, and the events are predictable. These machines do not think, so the physics of meaning also has nothing to do with them? At the level of external information about the states, probably does not have. And at the level of internal, attribute information? From the standpoint of the attributive approach, the internal information of the object should be stored on some unobservable carrier, to which the physics of meaning is directly related.

Machines with artificial intelligence, which is able to adapt to situations in conditions of uncertainty, the situation is more complicated - their states may be uncontrolled, like those of natural intelligence carriers, and events in which possible states are realized are most likely unpredictable. Information about possible states of intelligence plus non-intellectual information is naturally richer than that of non-intellectual objects, which means that on the hypothetical carrier (custodian) the internal information of the intellectual object will presumably take more space (in the terminology of the usual external information).

If you follow the evolutionary hypothesis, the person initially thought primarily of the right hemisphere of the brain, i.e. pictures, images that feed intuition and imagination; the left hemisphere played a supporting role. Such thinking was based on all the senses - sight, hearing, smell, touch, taste, and possibly other subsequently lost feelings characteristic of the animal world. With the development in the social environment, in joint work with other people, a person had a mimic, and then preverbal sound speech (different in different genera and tribes) and developed an organ of sound speech in the left hemisphere of the brain. The development of the left hemisphere initiated verbal and abstract-logical thinking, the emergence of pictographic, written, graphic, mathematical and other non-sound languages. The man began to think in words, symbols, signs, formulas. Such thinking is conscious thinking. But the picture-imaginative thinking has not disappeared - after all, the right hemisphere of the brain, thank God, is with us, and our intuition and imagination still help and help out. We should not forget about the subconscious, which, though "under" the consciousness, but also nourishes our memory and imagination, as well as the consciousness. Such is the evolutionary hypothesis of the emergence in the living substance of the human brain of internal image-shaped information responsible for holistic perception and necessary for storing meanings, as well as about the origin of external linguistic information necessary for information metabolism (Information metabolism is characteristic not only of intersystem, but also intrasystem interactions - in the latter case, for interactions between subsystems (structural elements of systems).). Picture-shaped internal information is understandable to any person, regardless of his belonging to a particular society and language coercion, but the external language information is available only to the person who speaks the language.

Words, schemes are always poorer than the image they describe, so the universe, stated or stored in any language of external information, most likely, is poorer than the holistic image of the universe. As a result, all scientific and extra-scientific truths packed in a language envelope, at best, can only approximately state the meaning of the stored image: “A spoken thought is a lie” (F. I. Tyutchev). Many writers and philosophers complained about the "lack of language" for the expression of thoughts (LN Tolstoy, AA Fet, A. de Saint-Exupery, H.G. Gadamer, etc.). And only art (primarily music, poetry, painting) can turn to the secret meaning of inner information if creators of works of art have access to a hypothetical information field (the only problem is how complete are the models stored by the information field. After all, all models are the rule is not much richer than the words and schemes describing the original. Recall that the concept of the information field is used here in a philosophical sense. About the physical nature of the information field "Physics of Information"). Geniuses of science are also able to communicate with the internal information (meaning) of the objects, phenomena, processes being investigated - this is how they differ from ordinary "research workers". And brilliant mathematicians are not an exception: before the formulas and algorithms created by them work figurative mathematical intuition in the form of ideas, vague geometric images and associations, possibly fueled by the information field. If the internal information stored in the information field is a limited model of the world, it is quite likely that the synthesis of various models is important, a synthesis in which the information model should “digest in a common pot” with other well-known and equally important models for understanding the meaning of the world.

The question remains about the possible ways of recording, storing and reading picture-shaped inner information of the information field. Recording in the information field can be carried out by a physical electromagnetic, quantum or non-physical, supernatural way (for example, telepathic). Storage of internal information is possible in a holographic form, associative, hierarchical (tree), network, list, cellular and other structures capable of storing not only audiovisual, but also tactile, taste information, smells. Reading from the information field is possible: at the level of living systems, by methods of empathy (feeling), meditation; at the level of "inanimate" systems - quantum (quantum teleportation) and other methods (The author is inclined to believe that the physics of meaning is valid not only in the field of human thinking. It is competent in relation to the whole fauna, flora and, possibly, to inorganic nature (surely assert impossible, be careful.) In this regard, the author is ready to accept accusations of hylozoism, although he is not a supporter of naive hylozoism, trying to find the roots of mental phenomena in the material world.). Reading can be associated with field "flashes" (pulses), which can sometimes be observed in the starry sky or in modern physical devices designed to study the microcosm.

Thus, the physics of meaning, in our opinion, is valid, at least within the framework of global evolutionism. It remains to hope that the physics of information will one day find an authentic answer, having verified the stated hypothesis among others.

Another equally important problem of information physics is how latent, passive internal information of an object is replicated into external information, how transcendental, extrasensory becomes accessible to the feeling and sensation, like empirical. This question is “with a beard” - it worried the philosophers of Antiquity, the Middle Ages, the New Age, the 20th century, and also the modern philosophers. We use the same method of analogies, in particular, a related circle of philosophical problems associated with the relation between the ideal and the material. Since the time of Plato, the debate continues, where the ideal is hidden - in consciousness or matter. It is important for us to find the answer to the question, not where, but how the ideal (spiritual) is transformed into the physical (physical).

We can agree that the internal mechanism of action of ideal causes is a code transformation that necessarily includes physical and chemical changes in the substrate storing information, as a result of which the latter is inseparable from its specific material carrier (Dubrovsky D.I.). A similar point of view: "... the condition for the mutual transition of the ideal into material processes is ... the presence of certain material mechanisms for processing information, as well as an appropriate material carrier performing these actions ... the ideal is a property of matter to contain information" (A. Kochergin).

At the same time, however, the physical bases of the code transformation of the ideal into the physical are not revealed. Yes, it is not part of the task of philosophy, for that there is a science. There is an assumption that mesomorphic liquid crystals could become the physical substrate of information processing processes. Another assumption: water (H 2 O). Both assumptions have serious experimental grounds for physicists who must answer how justified these assumptions are, bearing in mind the ideal attributive information to be processed not only alive but also inert systems of nature. A frequently used reference to a computer as a “visual example” of converting the ideal into the physical does not, in our opinion, answer the question, because, before materializing the program command signs into processor actions, these signs must materialize themselves from the programmer’s algorithmic thinking consciousness. At the same time, it is unclear how the last materialization of ideal thoughts occurs. The circle is closed, the problem remains open.

Similarly, such a physical problem can be posed: what mechanism is behind the transformation of the acceleration of bodies, particles, charges into physical fields? Popularizers of science see some kind of "signals" between acceleration and the field. It is required to know these “signals” - a task worthy of “questioners of nature,” looking into its abyss with the questions “what is it?”, “Why is it?”, “How is it?” - Galileo, Kant, Schelling, Faraday, Einstein, Rutherford - philosophers and scientists. Maybe in one of these chasms - information?

So, the philosophical problem of transforming the ideal into a material, physical problem of transforming the transcendental into an empirical, spiritual into physical, acceleration in the field, the problem of replicating internal information to an external essence, first of all, problems of the physical bases of code transformations of latent entities into phenomena, transformation of Kant's noumena (" things in themselves, “knowable by the mind) to a phenomenon (“ a thing for us ”given in sensory experience). This is one of the "chronically ill" problems of gnoseology. Probably, the search for these bases is a very difficult task, the solution of which depends on the objectivity of philosophical knowledge and for the solution of which philosophers could support physicists working in this field, or at least not interfere with them in such searches with famous "witch hunts" . In their turn, physicists, carrying out subtle research on the verge of "posyu-and the otherworldly", should not turn the results into mere speculative (speculative) knowledge, which is not amenable to convincing verification and does not require evidence. As a positive example, it suffices to refer to the history of recognizing private and general theories of relativity, the verification of which, we believe, required equally sophisticated experiments than is required for verification, for example, modern theories of torsion, chronal, scalar fields. Nevertheless, both theories of Einstein were verified, although disputes about them have not dried up so far. Philosophy and science should unite efforts in solving the problem, adhering to the well-known rule: "do not throw the baby out of the bath with the water". According to S.I. To Vavilov, “future physics will include as an initial, elementary phenomenon“ an ability similar to sensation, ”and based on it will explain a lot. As a result, the very content of physics can change drastically.”

In the informational-physical aspect, the problem of mapping and displaying is important : whether they have the same nature or different . The concept of the dialectic theory of reflection on the independence of the nature of reflection from nature is generally accepted: reflected 1 . If the act of reflection (information process) is material and energy, then the display does not fix the content or even the form of the displayed, but the manifestation of its response to the forcing (power) stimulus of the external initiator - the information consumer (cognition) or its source (control). This reaction is as selective as the stimulus itself, which is specific in nature and requires the corresponding specific reaction from the object of cognition or control. Then, indeed, the display as a fixation of the result of the reaction of the displayed and the displayed itself are inadequate in content (meaning) and independent in form. If you remove the incentive, such a mapping is impossible.

Such ideas, in our opinion, are not final, because individual consumers of information (in particular, people) always (albeit unconsciously) look for meaning in the display, trying to understand what is displayed through the meaning of the display, intuitively understanding that the meaning carried by external information from the source to consumer, is impossible without the meaning contained in the internal information of the source. For such consumers, mapping is a semantic merging of a consumer with a source of information (hermeneutic approach), if possible, excluding the material-energy sign coding → transmission → decoding of meaningful stages that are mandatory for traditional epistemology (as in a children's game of a damaged phone). After all, the maximum possible adequacy of the meanings of mapping and imaging, knowledge and knowable is achievable in information processes that do not envisage sign transformations. The very intuitive desire to penetrate into the meaning is indirect evidence of its hidden existence. Not all information consumers have a purpose in its meaning, or at least part of the meaning. The main thing is that it is available to those interested in acts of knowledge, not only explicit sign but also latent, excluding energy “noise” of sign transformations.

Thus, the ontological nature of mapping and imaging should be the same - semantic, informational and semantic. The meanings that are opened in the object and created by the subject merge in the display of the object. Since these meanings are stored by memory substrates, the latter, along with their contents, are the objects of the study of the physics of meaning.

Information field

Modern physical theories of gauge, information, quantum, spinor fields, the theory of physical vacuum seem to be potentially fruitful. The key here is the concept of the information field. Why not physical matter or energy? Recall that internal information is not matter and not energy in the generally accepted physical sense. Of all forms of physical matter, the concept of the field is perhaps the closest to the concept of internal information. В "Понятие информации как философская проблема" отмечалось, что только наличие обнаруживаемой силовой компоненты поля позволяет интерпретировать его как форму физической материи, что физическое поле можно интерпретировать и как силовую форму информации, где силовая компонента второстепенна. Не означает ли это, что при стремлении интенсивности (силы, энергии) силовой компоненты физического поля к исчезающе малой величине оно асимптотически дематериализуется, исчезает? Неужели от поля ничего не остается? Если так, то куда оно исчезло? И означает ли это, что исчезла и физическая материя? А если поле остается, значит ли это, что произошел количественно-качественный переход и поле стало качественно иным?

Поля на микро- и макроуровнях сопутствуют всем взаимодействиям и обязательно несут информацию о своих источниках вне зависимости от характера поля и его энергетики. При этом нет оснований для непререкаемых утверждений о том, что силовая составляющая поля не управляется этой информацией, даже если речь идет не о целенаправленном силовом действии, а лишь о стихийном причинении такого действия. Тогда можно предположить, что информация передается не только с целью управления или причинения – существует и другой необходимый смысл информационного процесса, связанный с сохранением информации , т.е. с памятью. Память всеобща, понятие памяти как способа бытия – онтологическое понятие, в памяти весь Универсум в своем самоотображении и самосохранении.

Подведем итог в виде следующей философской гипотезы, требующей научного подтверждения: "несиловое поле", если таковое возможно, есть информационное поле, назначение которого – хранить внутреннюю информацию для передачи ее во времени; передача внешней информации в пространстве – прерогатива силовых физических полей.

Остается предположить, что силовые формы поля, традиционно называемые физическими полями, появляются и исчезают на фоне постоянно существующего информационного поля, являющегося онтологическим фундаментом всех физических полей вне зависимости от их энергетики. Из информационного поля каждое конкретное физическое поле черпает порцию информации в объеме, необходимом для управления силовой функцией данного физического поля.

Что касается "исчезновения материи", то данному философскому вопросу, возникшему на фоне естественно-научной революции в физике микромира, более века. Если "понятие материи… не означает гносеологически ничего иного, кроме как: объективная реальность, существующая независимо от человеческого сознания и отображаемая им" (В.И. Ленин), то используемое нами онтологическое понятие информационного поля представляется шире приведенного диалектико-материалистического определения материи, ибо информационное поле (с хранимой в нем внутренней информацией Универсума) включено не только в "объективную реальность, существующую независимо от человеческого сознания", но и в субъективную реальность сознания. Если вслед за Лениным занять гносеологическую позицию, то надо признать, что сознание как непременный атрибут бытия вместе со своими носителями (мозгом, информационным полем) тоже входит в объективную реальность.

Здесь уместно пояснить, что мы подразумеваем под реальностью. Реальность для нас – синоним всеобъемлющего сущего, т.е. не внешнего по отношению к нам предметного сущего ( действительности ), постигаемого рационально, отстраненно (подобно ленинской "объективной реальности"), а сущего как единства сознания и сознаваемого, рационального и иррационального, постижимой действительности и непостижимого переживания ее. В категориях содержания и формы сущее – содержание мира, а реальность – форма данного содержания.

Сущее обладает сущностью, одной из доступных форм которой является информация. Н. Винер, отрицая физическую материальность информации, отталкивался в своих рассуждениях не от философии, тем более не от диалектического материализма, а от физических представлений своего времени, поэтому вопрос об исчезновении материи скорее терминологический. Ответ на него через введение философского понятия информационного поля представляется нам вполне уместным, не конфронтирующим с философскими концепциями материи и физическими теориями (последнее – при условии, что будет физически доказано существование несиловых взаимодействий и информационного поля).

В свою очередь физическая материя в виде корпускулярно-вещественного субстрата и информационное поле как память – это не товары на складе, они не статичны. Существование такого субстрата – это не состояние как константа, а состояние как переменная, т.е. процесс, более того, стохастический процесс (хотя бы внешне). Мгновенная вероятность любого значения этого процесса близка к нулю. Здесь мы сошлемся на известное в философии физики представление о состоянии как устойчивом, стационарном процессе, а о cобытии как неустойчивом, нестационарном процессе ("принцип процесса" А.Н. Уайтхеда – "Понятие информации как философская проблема" ). Следовательно, и адекватная модель процесса, именуемого "текущее состояние Универсума", – тоже процесс, именуемый "информация", а носитель этого процесса – поле (физическое или информационное) – тоже процессуален, динамичен. При этом внешняя информация – не что иное, как дискретная выборка отсчетов внутренней информации – квазинепрерывного процесса. Отсчеты информации не отличаются от отсчетов таких процессов, как артериальное давление, температура, координаты движущегося судна, колебания маятника. При числе отсчетов, стремящемся к бесконечности, внешняя информация асимптотически отражает всю внутреннюю информацию, однако это нереально, как нереально абстрактное понятие потенциальной бесконечности [не путать с математической (конкретной, актуальной) бесконечностью].

It follows from the above: a) any external information is unreliable, because it becomes outdated at the moment of its perception; b) memory as a dynamic information storage structure is also a process; c) participants of the information process as open systems possess a variable of internal information, the dynamics of which depends on the nature of the information metabolism.

Изложенные выше предпосылки сопоставимы с известными физическими теориями и, прежде всего, с теорией информационного А-поляяпонского физика Р.Утиямы (обобщенного калибровочного поля) (Р. Утияма. "К чему пришла физика"). Утияма полагает информационное А-поле физическим фундаментом реального проявления (в форме внешней информации) латентной внутренней информации элементарной частицы о совокупности (векторе А) свойств частицы (а 1 – заряд, а 2 – масса, а 3 - спин и т.д.)

Пример 1 . Пусть объект физически материален. Модель объекта требует его спецификации, т.е. количественно-качественного описания свойств, поддающихся формализации ( кодированию в математических, лингвистических, физических, химических и тому подобных кодах). Чем больше свойств специфицировано, тем адекватнее модель объекта. В идеале асимптотически специфицируются все без исключения свойства, а соответствующая модель полностью адекватна объекту. Эта асимптотическая модель и есть полная внутренняя информация объекта, но сам объект ее "не знает". Ее может знать (и то лишь частично) субъект, если он умеет извлекать внутреннюю информацию из объекта, т.е. реализовывать информационный процесс, в котором внутренняя информация реплицируется во внешнюю через скрытые кодовые преобразования. Субъекты любой природы умеют это делать, не подозревая о субстанциональном механизме информационного процесса, не задумываясь (если субъект – мыслящее существо) над проницательным гносеологическим вопросом Канта "что я могу знать?". Перефразируя Канта, зададим вопрос "how can i know?" in which only the initial stage of cognition is interesting to us, when internal information is prompted to physical replication to external.

Пусть объект – все тот же металлический шар с зарядом Q ( "Информациогенез и самоорганизация" ) и массой покоя M. Спецификация (и, соответственно, модель шара) в виде {Q, M} неполна, ибо мы не учитываем полярность заряда, размер, вещество, структуру шара и другие его свойства. Ограничимся свойствами Q и M, о которых мы судим опосредованно, регистрируя электрическую и гравитационную силы взаимодействия этого шара с другими телами, обладающими зарядом и массой и удаленными от шара. Агентами электрической и гравитационной сил служат соответственно электромагнитное (Е) и гравитационное (G) поля. Следовательно, эти поля, устанавливая взаимооднозначное информационное соответствие между нами и удаленным шаром, информируют нас о наборе его свойств А (а 1 – заряд, а 2 – масса), являющемся малым фрагментом внутренней информации шара. Суперпозицию физических полей Е и G можно назвать информационным А-полем. Отсюда любое известное науке физическое поле является в изложенном смысле прежде всего потенциальной компонентой (в вырожденном случае – единственной) информационного А-поля, несущего специфичное этому полю комплексное силовое сообщение (внешнюю информацию) о текущем А-состоянии объекта – источника физических полей (компонент А-поля).

Таким образом, информационные А-поля Утиямы – это физический фундамент реального проявления внутренней информации объектов. В развитие теории Р. Утиямы информационные поля известны сейчас в квантовой физике как калибровочные (обобщенные калибровочные) поля Янга-Миллса.

Физичность информационного А-поля в микромире Р. Утияма подтверждает следующими аргументами:

  • каждому независимому свойству (параметру) а i элементарных частиц из А-вектора свойств соответствует своя компонента информационного поля – физическое поле Аi, которое несет информацию об этом свойстве и через которое осуществляется взаимодействие между частицами, соответствующее данному свойству;
  • уравнения потенциала компоненты Аi информационного поля и способ связи частицы, обладающей свойством а i , с этой компонентой определяются законом сохранения свойства аi (заряда, массы, импульса и т.п.);
  • передача информации между частицами осуществляется посредством корпускулярных агентов (квантов) с нулевой массой покоя.

The properties of particles can be independent (then they correspond to the so-called commutative physical components of the gauge field) and dependent. In the latter case, according to the theory of gauge fields, noncommutative dependent components tend to self-generate physical “brothers” - other components of the same gauge field. In other words, the information A-field is capable of generating physical fields in the form of its subcomponents . Since, in the general case, the properties of objects are interdependent, the effect of self-generation of the physical subcomponents of the gauge field in addition to the original physical components is important for understanding the substantial nature of the information A-field. In this regard, we draw attention to the noncommutativity of the spin of elementary particles, which, according to Utiyam, leads to the self-generation of the corresponding spin field in the interaction of the gauge field with the particle.

According to Utiyam, the state of elementary particles as physical objects can only be monitored using calibration fields corresponding to the properties of the particles. This is a consequence of the general theory of gauge fields, which states that fundamental particles exchange corresponding forces with each other thanks to gauge fields. The sixteen-component gauge field, combining electromagnetic and weak nuclear interactions, was the first practical “unification” of fields within the framework of general field theory (S. Weinberg, A. Salam, S. Glashow; Nobel Prize 1979). According to Utiyam, strong (gluon) intranuclear interactions occur through a non-commutative gauge field. The efforts of physicists are now aimed at "superunification" of four known types of interactions (fields) within the framework of a single multicomponent gauge field - an information A-field, obeying a single fundamental principle.

For example, the physical vacuum (GI Shipov. The Theory of Physical Vacuum) is proposed as such a unified field, the EGS concept of its universal polarization (phase) states manifesting itself at the micro- and macroscopic levels is a single fundamental principle: In the state of charge polarization, the physical vacuum appears as an electromagnetic field (E), in a state of spin longitudinal polarization — as a gravitational field (G), in a state of spin transverse polarization — as a spin field (S).

The theory considers possible other polarization states of the physical vacuum, and, consequently, other fields. But the most difficult question is about the physical carriers of internal information and the wave potentials of the fields. Utiyam believes that these carriers have a common physical nature associated with the properties of space.

If a physical vacuum (or some of its state) is an information A-field, then the vector of properties A that generates this field can be attributed only to one substance — the space that is isotropic and uniformly filled with physical vacuum. This means that the information A-field is substantively reducible (simplified) only to substance - space and nothing else. Consequently, according to the concept of physical vacuum, the information field is substantially preceded by other fields and substances — the corpuscular-material form of matter (antimatter), physical fields, consciousness, but not space. In particular, whatever is meant by "spirit" as a metaphysical substance, it, "penetrating everything and everyone" like the ether, must have an equally ubiquitous agent in the world of physical matter. Only one agent can claim this role - a virtual information field, which, materializing in external information, co-operates the physics of meaning with the metaphysics of the spirit (despite the scientific philosophical positivism).

In connection with the above, the idea that there are no structures “specializing” in reflective processes in inanimate nature is subject to revision. Spin of elementary particles, wave-particle packets, physical vacuum, virtual particles, "quantum dots" as local nano-and picometric "electron traps" for microparticles - apparently, not a complete list of such structures, which are vividly discussed in physical publications 2 .

Example 2. The dichotomous spin of elementary particles is assumed by many physicists as a physical field carrier and keeper of binary information, from which follows the reflexive hypothesis of the ontological genesis of the binary code. The electron-positron wave packet ("fiton") as an elementary quantum-field structure of a physical vacuum (with mutually compensated spins of its constituent particles) is considered by many physicists as a possible virtual carrier and information keeper in an information field excited by any such polarization of such packets. Quantum dots — atomic systems 10–9 m in size and less — allow us to construct computer logic elements in the foreseeable future using the electron spin, as well as the energy-free information process of “quantum teleportation” .

Some of the structures and phenomena mentioned in Example 2 are not observable, however, under certain conditions, the information contained in them manifests itself in the fields and signals available to our sensations and consciousness directly or indirectly through the instruments 3 . Thus, the unobservable structure of a physical vacuum is the medium of the observed wave distribution of field potentials. Unobserved information stored in the depths of the unconscious (archetypes, etc.) by unknown (so far!) Communication channels is transmitted to consciousness (and from consciousness to action). Coherent (in-phase) waves of light carry unobservable information, manifested in the form of holograms. From the coherent spectral components of radio signals, information “lost” in noise can be extracted. If you deny unobserved internal information in a stagnant nature, then it is logical to deny its existence in geological formations that store the observed traces of past eras, in paleontological and archaeological finds, finally, in books and on computer disks, although created by man, but still "inanimate ". If humankind has managed to create an “inanimate memory” for a relatively short period of its existence, then can it be stated unconditionally that the progenitor nature for a much longer period of its development could not create a more capacious memory for storing its internal information ?! Thus, physics has come close to the notion of unobservable transcendence as an objective reality, to the recognition of this transcendence as a scientific field of study. Here materialism meets with idealism, not confronting with it according to the principle "who is not with us is against us", but cooperating according to the principle of Leopold the cat: "Guys, let's live together!". We believe that such cooperation satisfies the pluralistic challenges of the time, alien to the black-and-white perception of the world.

For all the debatable physical models under discussion, philosophy should not eliminate (exclude) them from its “problem base” by its status. It requires an unbiased methodologically verified philosophical analysis. In particular, the philosopher, “hovering over the fray”, should, as we see it, pay close attention to two factors: 1) the degree of isomorphism (similarity) of the output parameters of the models and the corresponding conclusions; 2) the degree of independence of the models on the apparatus of research, terminology, primary sources, experimental data.

It is precisely the isomorphism and independence (in the indicated sense) of several mathematical models of the development and consequences of a global nuclear war that gave one of the weighty reasons for the UN to adopt in its time a number of well-known crucial restrictions on nuclear testing and nuclear weapons. The isomorphism and independence of many historically parallel scientific discoveries and technical inventions (infinitesimal calculus, laws of conservation of matter and energy, radio, aircraft, electronic computers, etc.) always gave an immediate impetus to their development and practical implementation, while unique achievements were perceived with "admired distrust" and demanded repeated confirmation (for example, the particular and general theory of relativity, X-rays, etc.).

One of the important isomorphisms of three independent post-non-classical physical models of vacuum and information field (Veinik A.I., Shipov G.I., Taylor R.), revealed by the author, consists in their wave orientation. We agree that the corpuscle is associated rather with physical matter as a material substrate, and the wave with a field as a more subtle, almost virtual form of the existence of physical matter. Without conspiracy, the authors of all three models come to a common fundamental conclusion:

  1. field waves carry information about the source of the field and obstacles to its propagation;
  2. the degree of coherence (synphasicity) of different waves of the same field significantly affects its information content;
  3. virtual information contained in a wave of a certain field, under certain conditions, can become explicit information in the material and energy form of a signal.

Experimental confirmations: D. Gabor's holography (hidden information present in coherent field waves appears in a hologram!); optimal filters and "signal compressors" in communication and location technology (signals hidden in noise, which the observer does not even suspect, become observable!).

Example 3. In radio engineering, optimal filtering of a signal is often performed by synphasing the frequency components of a signal, which causes the so-called "compression" of the signal and the appearance of a compressed signal "peak" at a certain time t 0 above the detection threshold (Fig. 2.1.a: detection threshold " Threshold "; frequency components u 1 , u 2 , u 3 ; signal u 1 + u 2 + u 3 ). At the slightest phase shift relative to t 0 , the signal peak is scattered and can disappear below the detection threshold (Fig. 2.1.b).

The technical implementation of optimal filters is quite diverse. For us, their common property is important - the similarity (i.e., coincidence, up to constant coefficients) of the information characteristics of the transmitted signal and receiver of this signal. Such a receiver is the optimal filter. Obviously, optimal filtering is possible if the receiver knows a priori that the information characteristics of the expected signal (at least its frequency spectrum) are known. Optimal filtering, brought to the circuit design decisions, materializes the philosophical essence of effective cognition of an object: the subject must become like an object in order to effectively know the latter.

2: Physics Information

Fig. 2.1.

Concentration of the subject's thought on the object of knowledge, in our opinion, is the process of precisely such assimilation, self-tuning of the subject's intellectual receiver to the mode of optimal filtering of the signals of knowledge transmitted by the object. It is important that for an adequate assimilation to an object of knowledge, the subject must a priori, if not know, then at least represent the latent cognitive properties of the object. Therefore, for effective cognition, the subject must have a priori object theory in order to adjust his means of knowledge (feelings, instruments, brain) to the optimal filtering mode of signals carrying external information about the object: “solving the problem, know the answer” (mathematics), “necessary information - to the one who expects it "(scientists, psychics)," everyone sees (hears) what he wants to see (hear) "(mystical practices of knowledge: yoga, Buddhism, Zen, hesychasm, etc.).

If the technique created by man demonstrates such possibilities, perhaps the person himself is able to extract latent information by self-tuning the brain and the whole body (the whole body thinks!) To receive the waves of the information field. So, the holographic method of recording and reproducing images is considered by many biologists and physiologists to be the basis of the three-dimensional mechanism of vision. Does the concept of the information field explain the nature of a priori knowledge ("Knowledge as the highest form of information"), Kant's "pure reason"?

Nevertheless, we refer these models to deviant science, because within the framework of the dominant physical paradigm of the universe they have no place yet.

Measuring information

If information is a physical entity, it must, according to a rational scientific and philosophical doctrine, be measurable. The first methods of measuring information were proposed at the beginning of the twentieth century. (R.A. Fisher, R. Hartley). Continuing the begun, N. Wiener in “Cybernetics” (1948) operated with mathematical concepts “amount of information” and “entropy”, which in the same 1948 independently of Wiener also used K.E. Shannon, who constituted information theory as a mathematical theory of communication. Note that the Wiener – Shannon entropy is informational entropy, in contrast to the Boltzmann – Maxwell – Clausius thermodynamic entropy. The latter historically preceded the concept of informational entropy. The linguistic coincidence of these concepts is not accidental - behind it are important substantive and mathematical coincidences, because in both cases entropy characterizes the degree of diversity of the system states (source of information, physical or other system).

For information theory, it is important to compare the mathematical concepts of informational entropy (hereinafter simply entropy) and the amount of information. Within the framework of a probabilistic (meaningful) approach, entropy is considered to be a measure of the uncertainty of a random choice as the source of one or another state. Any such choice, resulting in restriction of the diversity and uncertainty of the states of the source of information, reduces its entropy, while increasing the amount of information as a measure of the choice certainty. The choice, although made by the source, is forced (imposed) by the consumer of information, controlled by this consumer, knowing the source.

Example 4. The fact that the subject received information about the object is a choice that leads to the restriction of the diversity and uncertainty of the object states, but only in the epistemological sense. We have the right to assume that not only the subject, but also the object in the information process of knowledge makes its choice in the form of one of the possible object states as an informationally equivalent reaction to the choice of the subject. The difference between the object informational choice and the subject one is seen by us in that the former does not reduce the diversity and uncertainty of the subsequent object elections, since each of them is just a situational fixation of the next selected state. If we represent the state of an object as balls in an urn, then the mediated (virtual) selection of balls by the effectively knowing subject is made without returning to the urn, while the object selects (presents) them with a return. And this is understandable - an object is one, and there are many subjects trying to know it; if the “balls” are not returned to the ballot box, it will not be enough for everyone. Such a choice is nothing other than generating a copy of the "ball", i.e. copies of the state of the object.

Entropy is calculated through the number of possible source states and the probability of its transition to these states. Accordingly, the amount of information received from the source as a result of experience (the act of cognition) is considered a measure of uncertainty taken by experience - the amount of information is a measure of the certainty of experience. It is in this sense that he understood the entropy and the amount of information of K.E. Shannon. Since experience reduces pre-experiment uncertainty, Shannon suggested that the amount of information obtained in the experiment should be understood as the difference between the a priori and a posteriori values ​​of entropy 4 . It follows that the entropy and the amount of information should be calculated in the same units for any source, regardless of the content of its states 5 .

For any source, its state and their probabilities can apparently be determined only with a certain degree of approximation and subjectivism. 6 It is especially difficult to determine the possible states of the thinking sources of information in which these states are beyond control. For such sources, information should be measured in terms of entropy and the amount of information with caution. However, the main thing for us is to understand that the possible states of the source are a priori, because they do not depend on experience, while the states (events) observed in experience are a posteriori. Therefore, the entropy of the source can be judged a priori and a posteriori, and the amount of information - only a posteriori. The a priori entropy and a posteriori of the amount of information lead to the following conclusion: the a priori entropy of the source (if it is measurable) is complete, and the a posteriori partially characterize its internal information, the a posteriori amount of information - the external information of the source.

Example 5. If we assume that the number of states of the Universum tends to potential infinity, then the potential entropy of Universum as a source of information also tends quantitatively to infinity. На фоне научно-философской полемики о пространственно-временной бесконечности или конечности Вселенной приведенное суждение позволяет утверждать, что если Вселенная и бесконечна, то прежде всего в информационном смысле. Трудность нашего положения обусловлена отсутствием экспериментальных или имитационно-вычислительных методов проверки информативности Вселенной как наиболее доказательных в рациональной науке. Попытка же абсолютного, полного познания источника с бесконечным числом состояний приводит к порочному кругу, внутри которого мы вынуждены вращаться бесконечно долго, задавая бесконечное число вопросов и получая на них столько же ответов, которые для своего хранения потребуют бесконечной памяти. Отсюда количество информации, получаемой в любом опыте, всегда конечно и не превышает энтропии источника – Универсума или любой входящей в него системы. Данные рассуждения имеют и строгую математическую основу (закон конечной информации).

продолжение следует...

Продолжение:


Часть 1 2: Physics Information
Часть 2 Закон сохранения информации - 2: Physics Information


Comments


To leave a comment
If you have any suggestion, idea, thanks or comment, feel free to write. We really value feedback and are glad to hear your opinion.
To reply

philosophiya

Terms: philosophiya